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Abstract

Yield curve modelling is an essential task for the governance of the modern economy 
and in particular for financial market participants, and hence it is an extensively 
researched topic. This paper presents yield curve modelling using the Nelson-Siegel 
approach for Poland, which was recently recognised as a developed country. Yield 
curve studies available for Poland are quite scarce and were conducted when Poland 
was still classified as a developing country. Therefore, it is worthwhile to exam-
ine the yield curve construction after three decades of economic transition. This 
study offers a model which, with certain assumptions, derives zero-coupon yield 
curves from the market prices of Treasury bonds. The simplifying assumptions 
reduce model development time, while delivering yield curves of higher accuracy 
than those commercially available.

Streszczenie

Modelowanie krzywej dochodowości należy do kluczowych zadań w zarządzaniu 
nowoczesną gospodarką, jest również szczególnie istotne dla uczestników rynku 
finansowego, dlatego pozostaje przedmiotem szeroko zakrojonych badań nauko-
wych. W artykule zaprezentowano modelowanie struktury terminowej stóp procen-
towych z wykorzystaniem modelu Nelsona–Siegla dla Polski, która została uznana 
za kraj wysoko rozwinięty. Studia krzywych dochodowości dla Polski są stosun-
kowo rzadko dostępne i zostały wykonane, kiedy Polskę zaliczano do grona kra-
jów rozwijających się. W związku z tym, pożądane jest przeprowadzenie badań 
dotyczących konstrukcji krzywej dochodowości po trzech dekadach transforma-
cji gospodarczej. W prezentowanym badaniu zaproponowano model, który – przy 
pewnych założeniach – szacuje zero-kuponowe krzywe dochodowości na podstawie 
cen rynkowych obligacji skarbowych. Przyjęte założenia upraszczają konstrukcję 
modelu i skracają czas jego budowy, przy czym dokładność oszacowanych krzywych 
jest na poziomie wyższym niż w przypadku wykorzystania krzywych dostępnych 
w płatnych serwisach informacyjnych.
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Introduction

Developing a model that would deliver an accurate yield curve is important for financial market partic-
ipants and governments. It would make it possible to accurately price interest rate derivatives, estimate the 
credit risk of counterparties as well as capital and liquidity requirements for banks and other financial insti-
tutions. Unlike central banks in other developed economies, the National Bank of Poland does not publish an 
official daily yield curve, hence practitioners often rely on curves supplied by commercial financial information 
services such as Thomson Reuters Eikon or Bloomberg. Yield curve estimation is not a trivial task, yet for the 
Polish market it is particularly challenging because the Treasury bond market is not sufficiently mature. We 
argue, however, that it is possible, with some limitations, to construct a yield curve based on Treasury bond 
market prices using a pragmatic methodology that can be applied by practitioners. We present a relatively 
simple method which derives the yields from free public data and in the next step estimates a curve applying 
the Nelson-Siegel (NS) approach. Based on in-sample pricing, we confirm the accuracy of the obtained curves, 
which proves that they can be viewed as an alternative to commercially available ones. In certain applications, 
which rely on factors derived from the NS model (level, slope, curvature), this can provide better accuracy, 
while not being overly demanding in terms of development due to simplifying assumptions.

The article is organised as follows. In Section 2, we review the literature on yield curve modelling using 
the Nelson-Siegel model with a particular focus on the Polish economy. In Section 3, we describe data used 
for the modelling. Section 4 provides the methodology, Section 5 presents the results of the yield curve esti-
mation and bond valuations. The next section concludes.

Literature review

The interpretable affine model proposed by Nelson and Siegel [1987] and its subsequent extensions have 
gained a lot of recognition in yield curve modelling. They are widely used in academia as well as central and 
commercial banking applications. Nelson and Siegel proposed a model based on expectation theory of the 
term structure of interest rates. It describes the yields dynamic with four parameters: level, slope, curvature, 
and speed of decay. They modelled instantaneous forward rates for the US market, which can be interpreted 
as expected future spot rates under the assumption that the forward term premium is negligible. The model 
was developed based on bid-ask discount quotes which were used for price derivation.

The Nelson-Siegel approach was extended by Svensson [1994], who introduced additional parameters 
allowing a better fit. Svensson modelled a yield curve for the Swedish economy; his study was based on market 
data. In turn, Diebold and Li [2006] provided a dynamic extension to the NS approach by modelling the level, 
slope and curvature parameters (beta factors) as autoregressive series using the market prices of US Treasury 
bonds. Curve modelling with the NS approach (and its extensions) is typically performed using market data, 
such as bond prices or yields. However, when the focus is on using beta factors from the NS model for yield 
forecasting or on analysing interactions between them and other variables, the yield derivation is often omit-
ted in favour of using zero-coupon curves supplied by financial providers or central banks. The direct market 
data approach was applied by Diebold, Rudebusch, Aruoba [2006], who used market bid-ask quotes for US 
Treasury bonds. They put the NS model into space-state form and applied the Kalman filter to produce smooth 
estimates of the underlying beta factors. They also related the factors to the macroeconomy. Hladíková and 
Radová [2012] concluded that the NS model produces reasonable yield curves for the Czech Republic. Their 
curve estimation was based on bond market prices and yields to maturity. Ibanez [2015] applied the NS model 
to curve fitting presenting two approaches, the first one being a rigorous approach, from the academic point 
of view and the second one more pragmatic, focusing on the easiness of implementation. Both methodolo-
gies used US Treasury market data published by the Federal Reserve. Annaert et al. [2013] researched a mul-
ticollinearity problem among the NS model parameters and offered a conditional ridge regression procedure 
as a solution. They used short Euribor rates from the official website and euro swap curves with maturities 
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between two and 10 years collected from Thomson DataStream and through a bootstrapping technique they 
constructed zero-coupon curves.

Geyer and Mader [1999] discussed the properties of the NS model and its Svensson extension in describ-
ing the interest rate structure in Western Europe, the United States and Japan. Their research based on bond 
prices obtained from Datastream concluded that the parsimonious NS approach outperformed Svensson’s one 
in terms of parameter stability in time as it was less sensitive to outliers. Gilli, Große and Schumann [2010] 
examined the calibration of the NS model and its Svensson extension through the application of Differential 
Evolution – an optimisation algorithm to obtain the parameters. For their experiment they reused the data 
set collected by Diebold and Li [2006].

For the Polish market, Kliber [2009] used bond prices augmented with WIBOR rates for the comparison 
of yield construction using Nelson and Siegel [1987], Svensson [1994] and piece-wise polynomials. Sepielak 
and Borowski [2013] used bond prices for their yield curve estimation with the Svensson approach involv-
ing a number of limitations regarding the shape of the curve and non-negative rates. Marciniak [2006] con-
ducted a comparative analysis to show that the Svensson extension of the NS model performed relatively well 
in comparison to the B-spline – Variables Roughness Penalty model in explaining the interest rate structure. 
He used data from the Polish bond market complemented with WIBOR rates for the short end of the curve.

The second approach, in which already estimated zero-coupon yields are used, was applied by Yu and Zivot 
[2010]. They used rates provided by Bloomberg for the comparison of the two-step estimation procedure pro-
posed by Diebold and Li [2006] to the one-step Kalman filtering estimation method discussed by Diebold, 
Rudebusch, Aruoba [2006]. This study also examined the inclusion of the macroeconomic variables to improve 
the forecasting accuracy. Similarly, Rubaszek [2016] studied dynamic affine models with autoregressive, vec-
tor-autoregressive and Bayesian autoregressive processes, which include an analysis of the impact of macro-
economic variables on beta factors. He used yield curves published by the Federal Reserve. Sengupta [2010] 
confirmed that curves fitted with the NS model are better for actuarial valuation than curves published by 
the National Stock Exchange in India. The study was based on zero-coupon yields obtained from Bloomberg.

For the Polish market, Dziwok [2013] analysed which criterion should be used to fit the short end of the 
yield curve using the Svensson [1994] model. Her study indicated that the best results were achieved by min-
imising the squared difference between actual and theoretical prices weighted by the reciprocal of the dura-
tion. She used publicly available WIBOR rates. Kostyra and Rubaszek [2020] analysed interest rate forecasting 
by predicting beta factors through the application of the autoregression, vector-autoregression techniques as 
well as machine learning. They used swap rates provided by Thomson Reuters Eikon.

Our study presents a method that derives spot rates directly from Treasury bond prices, and then esti-
mates zero-coupon yield curves using the NS approach. These curves are more accurate than those estimated 
by NS models where zero-coupon yields were collected from Thomson Reuters Eikon.

Data

Treasury bond market prices

For our model, we collect daily Polish Treasury bond prices1 published by BondSpot2, using the Python 
BeautifulSoup package to web-scrape the data directly from the BondSpot website, specifically the second 
fixing prices from the 2019:07–2021:06 period for 25 wholesale zero-coupon and fixed-coupon Treasury 
bonds (Table 1; all tables and figures are at the end of the article). On average, 19 bonds were used to con-
struct a daily yield curve. In Poland, there are very few bonds with maturities longer than 10 years, therefore 
the curve estimation is limited for maturities up to 10 years, which is common practice in yield estimation. 

1 Price is the bond value expressed in percentage of the nominal; the nominal value is PLN 1,000.
2 Treasury BondSpot Poland is a wholesale market dedicated to the trading of Polish Treasury bonds and Treasury bills. Bond prices can 

be found at www.bondspot.pl/fixing_obligacji.
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We consider the following maturity buckets: 1Y, 2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, 10Y. For any given day, bonds 
with maturities longer than 10 years are ignored. BondSpot removes Treasury bonds with maturities shorter 
than three months from fixing. These bonds are typically excluded from yield curve estimation due to their 
low liquidity, as pointed out by Nymand-Andersen [2018].

Benchmark zero-coupon curves

We consider the zero-coupon curves based on Polish Treasury bonds provided by Thomson Reuters Eikon 
as the benchmark. We have gathered daily series zero-coupon curves from the same period and maturities as 
above. For each day we transform the series of yields (rτ ) for fixed maturities (τ ) 1Y, 2Y,…, 10Y into contin-
uously compounded yields with the following formula:

  Rτ = ln 1+
rτ
100

⎛
⎝⎜

⎞
⎠⎟
⋅100. (1)

Methodology

Yields derivation

We follow the approach outlined by Munk [2004] and Glova [2010] to use matrix theory to find discount 
factors and associated zero-coupon spot rates. It is possible to derive n yields if we have n bonds with n differ-
ent maturities (τ ) and where cash flows (coupon and notional payments) generated by bonds span across all 
maturities, i.e., we need to have at least one notional payment for each maturity. The cash flows are mapped 
to the maturity buckets in the following way: payments occurring within one year are mapped to the 1Y matu-
rity bucket, payments occurring between the first year and the end of the second year are mapped to the 2Y 
maturity bucket, etc. This will make it possible to construct a system of linear equations for each day, where 
the clean bond prices (P) equal the sum of total cash flow payments (CF) multiplied by discount factors (d), 
which can be expressed in the matrix notation as:

  Pn =CFn,τ ·Dτ ,  (2)
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Since this system of equations has n equations and n unknowns (dτ ), we will be able to find unique solu-
tions. However, payment dates can differ, and we may have more than one payment date in a single maturity 
bucket. Specifically, for the Polish market coupons are paid out annually, typically in April, July or October. For 
illustration, suppose that on December 31 BondSpot published the prices of 11 zero-coupon and fixed-coupon 
Treasury bonds. Two bonds are maturing the following year, one in April (4-month maturity) and another in 
July (7-month maturity). The remaining nine bonds have payment dates in October and notional payments 
in each maturity bucket from 2Y to 10Y (in 22 months for the 2Y bucket, in 34 months for the 3Y bucket, 
etc.). Thus, in the 1Y maturity bucket, we have two maturing bonds at different dates (April and July of the 
following year). We offer two variants to deal with this situation in order to satisfy the square (10 by 10) 
matrix requirement. In the base model, we average the bond prices and coupons using the simple arithmetic 
mean. In our example, for the 1Y bucket, we would use the average price and coupon of these two bonds to 
populate P1 and CF11 respectively. Alternatively, we only use bonds with the longest maturity in each bucket, 
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disregarding those with shorter maturities. In the example, this means dropping the bond which matures 
in April and using the price and cash flow of the bond maturing in July to populate P1 and CF11 respectively, 
hence no averaging is required.

Having found the discount factors by solving a system of linear equations for each day, we arrive at the 
daily spot yields for each maturity (yτ ) by using the following formula, where dτ is the discount factor for the 
maturity bucket, and τ is the average maturity in this bucket:

  yτ = − ln dτ( ) /τ .  (4)

In the case of multiple payment dates in a single maturity bucket, we need to find the average maturity 
for each bucket across all bonds, in other words, for each column in the square cash flow matrix. Continu-
ing with the example, since there are two bonds maturing in the 1Y bucket (in April and July), we find their 
average maturity, which is 5.5 months and corresponds to element CF11. Now we can find the mean maturity 
of all 10 cash flows in the first column of the matrix (1Y bucket), which is 9.6 months. Since in other matu-
rity buckets all payments occur in October, the average maturities are equal to the payment periods, i.e., 22 
months in the 2Y bucket, 34 months in the 3Y bucket, etc. In the alternative approach, since we dropped the 
bond maturing in April, the maturity corresponding to element CF11 is the maturity of the remaining bond, 
i.e., seven months, therefore the average maturity in the 1Y bucket is 9.7 months. All other bonds have pay-
ment dates in October, therefore the average maturities in the buckets from 2Y to 10Y are equal to the pay-
ment periods, i.e., 22 months in the 2Y bucket, 34 months in the 3Y bucket, etc.

Both approaches suffer from some simplifications employed to satisfy the square matrix requirement. The 
source of error in the base approach is the averaging of bond prices, coupons and maturities. In the alterna-
tive, the information loss is due to the exclusion of some of the bonds and the averaging of maturities. On the 
other hand, these simplifications reduce computational complexity, especially for the alternative model, and 
the code development time.

We have now estimated yields for each maturity of our sampled time period. However, to estimate the 
entire yield curve and to find the yields for the fixed maturities (1Y, 2Y,…, 10Y), we use the Nelson-Siegel 
interpolation approach.

Curve fitting with Nelson-Siegel (NS)

Nelson and Siegel [1987] proposed a relatively simple parametrisation of the term structure of interest 
rates. We need to find four parameters β1, β2, β3 and λ to estimate yield Yτ for a particular maturity τ. The 
β1 parameter does not depend on the time to maturity, its weight is constant and set to 1, therefore it can be 
viewed as the long-term yield level. β2 is weighted by a function of time to maturity. The limit of this func-
tion when τ approaches 0 equals 1, however as τ increases, the function exponentially decays to 0, hence β2 
impacts the short-term interest rate and can be interpreted as the slope due to exponential decay. β3 is also 
weighted by a function of time to maturity, but the limit of this function when τ approaches 0 is 0, then as 
τ grows the function increases, reaches its maximum and declines to zero as τ approaches infinity. β3 has the 
strongest impact on the medium-term interest rates; it can also be thought of as a curvature as it adds a hump 
to the yield curve. The λ parameter governs the speed of the exponential decay of β2 and β3; the higher the 
value of λ the faster the decay. It also determines the position of the hump. The parameters β1, β2, β3 are esti-
mated using the spot rate at different maturities derived from the market prices according to the process 
described in Section 4.1. For the λ parameter we define a search range between 0.2 and 1 following Ibanez 
[2015] to find the value which minimises the root mean squared error (RMSE). We also verify a special case 
with the value set at 0.7308, as per Diebold and Li [2006]3. We use the NS model in the functional form pro-
posed by Diebold and Li [2006].

3 This is a scaled value from the original 0.0609, as we measure time to maturity in years, not months, we need to multiply by 12.
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  Yτ = β1 + β2

1 −e−τλ

τλ
⎛
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⎞
⎠⎟
+ β3
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τλ
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⎝⎜
⎞
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.  (5)

Results

Zero-coupon yield curves

We produce daily zero-coupon yield curves for the 2019:07–2021:06 period using the NS model with two 
variants of zero-coupon yields derived from BondSpot prices and with zero-coupon curves from Thomson 
Reuters Eikon, as shown by Figure 1 and the descriptive statistics in Table 2. Figure 1 shows that the highest 
differences are for maturities of up to 1Y and to a lesser extent for maturities up to 2Y. However, the yields 
converge after a series of nominal interest rate decreases. The National Bank of Poland cut interest rates three 
times between March and May 2020, with the reference rate dropping from 1% to 0.1%. Table 2 shows that on 
average yields for maturities up to 7Y for the base and alternative models are mostly higher than the bench-
mark, with the alternative model having the highest values. For maturity 8Y the average yield is the same for 
all three models. For maturities longer than 8Y the benchmark model has the highest yields, with yields for 
the alternative model being the lowest. The standard deviations for all the models are similar in their respec-
tive maturities.

Beta factors

We provide a time series of beta factors for each model in Figure 4 and their descriptive statistics in 
Table 3. Figure 4 shows that the Level factors are very similar across the examined period for all the models. 
However, we can observe some differences for the slope and curvature factors especially at the beginning of 
the examined period. Table 3 shows that the average values for the level factor are very close, and the Thom-
son Reuters Eikon model is sandwiched between the base and the alternative, with the base model having the 
lowest average value and the alternative having the highest average. Standard deviations for the level factor are 
almost the same for all three models. The slope factor has a significantly lower average value for the Thomson 
Reuters Eikon model than the base and alternative, followed by the base model, with the alternative having 
the highest average value. The standard deviations for the slope factor are the same for the base and the alter-
native, with Thomson Reuters Eikon having the smallest value. The curvature factor has a significantly higher 
average value for the alternative model than the other two. It is followed by Thomson Reuters Eikon, with 
the base model having the lowest average value. The standard deviations for the curvature factor are practi-
cally the same for the base and the Thomson Reuters Eikon, with the alternative having a significantly higher 
standard deviation. Overall, the base model has closer beta factor statistics to the benchmark.

Root mean squared errors

In the literature, there are two approaches to verify the accuracy of yields. The verification can be done 
by pricing bonds with obtained rates and comparing the results to market prices. The second method relies 
on comparing the yields. We conduct the price verification because the pool of zero-coupon bonds in the Pol-
ish market is small. Therefore, it would be difficult, if not impossible, to do a meaningful yield comparison. 
We priced the Treasury bonds using curves produced by three models to generate clean theoretical prices. We 
present the root mean square error (RMSE) results4 in Table 4 for different values of the λ parameter between 
0.2 and 1. Also, for a selection of bonds from the sample, we provide graphs with the actual fixing prices and 
prices estimated with each model where λ was set to 0.7308 (Fig. 5).

4 The RMSE was computed for all the sampled bonds, including those which were not selected to derive zero – coupon yields.
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For the base model, the smallest RMSE is achieved with λ set at 0.63, and for the alternative at 0.56, for 
which the RMSE is 0.2879 and 0.3036 respectively. These results are somewhat better compared to errors 
when λ is set at 0.7308 as per Diebold and Li [2006], the RMSE equal to 0.2936 (base) and 0.3149 (alterna-
tive). The sensitivity analysis of the RMSE to parameter λ presented in Table 4 indicates that errors for our 
both models are rather insensitive to the parameter when its value is between 0.2 and 1. On the other hand, 
the NS benchmark model is much more sensitive to λ, with the lowest RMSE 0.3624 for λ set to 0.69. The 
minimal RMSE is distinctly lower than 0.4345, which is achieved when λ is fixed at 0.7308. Overall, there is 
an opportunity to decrease the RMSE for all three models by setting the λ value slightly below 0.7308, how-
ever the gains for the base and alternative models are negligible.

The best performing model, with the smallest RMSE, is the base model. It is constructed using averages, 
therefore the prices of all the bonds are reflected in the yield curves. Next in ranking is the alternative model, 
where we simply select bonds which are closest to the higher maturity bound of each maturity bucket. The 
alternative approach reduces development, as the sample always has 10 bonds with principal payments in each 
maturity bucket, which satisfies the square matrix requirement. The RMSE difference between the base model 
and alternative is in fact negligible. The RMSE is the highest when pricing the bonds with Thomson Reuters 
Eikon zero-coupon rates. The difference between this model and our approaches is small, yet distinct. Over-
all, the base model has consistently the smallest RMSE in the whole sample period. The benchmark model 
underperforms particularly during the period when the first COVID-19 lockdown was anticipated and finally 
introduced in Poland (March 2020), with the RMSE reaching an all-time high when the nominal interest rates 
were reduced by the central bank (Fig. 2). For all the models, the errors are the highest for maturities longer 
than eight years (Fig. 3).

Discussion and conclusions

This paper offers a model to estimate zero-coupon yield curves using the Nelson-Siegel approach based 
on the daily market prices of Treasury bonds published by BondSpot. The motivation was to offer a simple 
model to derive zero-coupon yields through a bootstrapping technique using matrices and then apply the NS 
approach with a fixed λ parameter to obtain the yield curve. The simplicity is achieved by using all the fixed 
coupon bonds available and applying arithmetic means to build a cash flow matrix and bond price vector and 
by fixing the λ parameter at 0.7308 in the NS method. The price paid for the simplification is some level of 
inaccuracy in the bond valuations. However, the model proved to deliver more accurate curves than zero-coupon 
yield curves obtained with the same method but based on zero-coupon yields provided by Thomson Reuters 
Eikon. The study indicates that when the yield curve is estimated with the NS model, it may pay off to derive 
the yields directly from market data, as opposed to using commercially available zero-coupon yields. The pre-
sented approach would be particularly useful for pricing or studies which rely on the use of beta factors, for 
example to examine their correlation with other variables or to use them for yield forecasting. However, the 
potential benefits come at the expense of the time spent to develop the code to scrape the bond prices from 
the BondSpot website and to solve systems of equations to obtain daily yields. Commercially available curves 
are also provided for longer maturities of up to 20 years.
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Table 1. Polish Treasury bonds

No ISIN Coupon (%) Maturity Date

1 PL0000102646 5.75 23 Sep 2022

2 PL0000105391 5.75 25 Apr 2029

3 PL0000105441 5.50 25 Oct 2019

4 PL0000106126 5.25 25 Oct 2020

5 PL0000106670 5.75 25 Oct 2021

6 PL0000107264 4.00 25 Oct 2023

7 PL0000107611 2.75 25 Apr 2028

8 PL0000108197 3.25 25 Jul 2025

9 PL0000108510 1.50 25 Apr 2020

10 PL0000108866 2.50 25 Jul 2026

11 PL0000108916 2.00 25 Apr 2021

12 PL0000109153 1.75 25 Jul 2021

13 PL0000109427 2.50 25 Jul 2027

14 PL0000109492 2.25 25 Apr 2022

15 PL0000110151 2.50 25 Jan 2023

16 PL0000110375 0.00 25 Jul 2020

17 PL0000111191 2.50 25 Apr 2024

18 PL0000111274 0.00 25 May 2021

19 PL0000111498 2.75 25 Oct 2029

20 PL0000111720 2.25 25 Oct 2024

21 PL0000112165 0.00 25 Jul 2022

22 PL0000112728 0.75 25 Apr 2025

23 PL0000112736 1.25 25 Oct 2030

24 PL0000112900 0.00 25 Apr 2023

25 PL0000113460 0.25 25 Oct 2026

Source: https://www.gov.pl/web/finanse/bony-i-obligacje-hurtowe1.

Table 2. Zero-coupon yields – descriptive statistics

Maturity Mean St. Dev. Min. Max. ACF ADF

Base

1Y 0.50 0.65 –0.17 1.64 0.99 –18.05***

2Y 0.60 0.66 –0.13 1.62 1.00 –18.63***

3Y 0.79 0.61 0.03 1.78 1.00 –18.90***

4Y 0.99 0.56 0.24 1.92 1.00 –18.97***

5Y 1.16 0.50 0.45 2.05 1.00 –18.68***

6Y 1.30 0.46 0.63 2.14 0.99 –18.23***

7Y 1.42 0.43 0.77 2.22 0.99 –17.77***

8Y 1.51 0.40 0.89 2.28 0.99 –17.37***

9Y 1.59 0.38 0.99 2.36 0.99 –17.05***

10Y 1.65 0.36 1.06 2.38 0.98 –16.80***

Alternative

1Y 0.55 0.67 –0.13 1.81 0.99 –18.60***

2Y 0.66 0.70 –0.14 1.78 1.00 –18.71***

3Y 0.88 0.65 0.01 1.87 1.00 –18.76***

4Y 1.03 0.59 0.23 1.98 0.99 –18.82***

5Y 1.18 0.52 0.44 2.08 0.99 –18.65***

6Y 1.32 0.47 0.63 2.16 0.99 –18.31***
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Maturity Mean St. Dev. Min. Max. ACF ADF

7Y 1.43 0.42 0.78 2.23 0.99 –17.95***

8Y 1.51 0.39 0.91 2.28 0.99 –17.61***

9Y 1.58 0.36 1.01 2.32 0.99 –17.33***

10Y 1.64 0.34 1.09 2.36 0.98 –17.10***

Thomson Reuters Eikon

1Y 0.46 0.57 –0.21 1.38 0.99 –17.54***

2Y 0.64 0.64 –0.04 1.60 1.00 –16.33***

3Y 0.80 0.63 0.04 1.76 1.00 –14.64***

4Y 0.97 0.58 0.19 1.91 1.00 –14.07***

5Y 1.13 0.52 0.37 2.03 0.99 –13.92***

6Y 1.28 0.47 0.56 2.13 0.99 –13.92***

7Y 1.40 0.43 0.74 2.20 0.99 –14.02***

8Y 1.51 0.39 0.90 2.26 0.99 –14.18***

9Y 1.61 0.36 1.04 2.32 0.99 –14.36***

10Y 1.70 0.34 1.17 2.38 0.99 –14.51***

Notes: ACF and ADF refer to  the values of the autocorrelation coefficient for the first lag and the Augmented Dickey Fuller test for the 
first difference. Asterisks ***, ** and * denote the rejection of the null that series is a  non-stationary series at 1%, 5% and 10% significance 
level respectively.

Source: Own calculations.

Table 3. Beta factors – descriptive statistics

Beta factors Mean St. Dev. Min. Max. ACF ADF

Base

β1 (Level) 2.25 0.28 1.43 3.08 0.96 –15.05***

β2 (Slope) –1.58 0.57 –2.82 –0.12 0.98 –15.64***

β3 (Curvature) –2.79 1.46 –5.01 0.67 0.99 –13.32***

Alternative

β1 (Level) 2.19 0.26 1.26 3.03 0.95 –15.45***

β2 (Slope) –1.50 0.57 –2.82 –0.14 0.98 –16.61***

β3 (Curvature) –2.50 1.75 –4.89 1.27 0.99 –14.60***

Thomson Reuters Eikon

β1 (Level) 2.37 0.29 1.88 3.23 0.97 –14.62***

β2 (Slope) –1.96 0.41 –2.98 –1.04 0.97 –17.45***

β3 (Curvature) –2.74 1.45 –5.06 0.26 0.98 –18.65***

Notes: ACF and ADF refer to  the values of the autocorrelation coefficient for the first lag and the Augmented Dickey Fuller tests for the 
first difference. Asterisks ***, ** and * denote the rejection of the null that the series is a  non-stationary series at 1%, 5% and 10% signifi-
cance level respectively.

Source: Own calculations.

Table 4. Root mean squared errors (RMSE) sensitivity to λ

λ 0.2 0.4 0.6 0.7308 0.8 1.0

Base 0.3383 0.3104 0.2883 0.2936 0.3035 0.3517

Alternative 0.3320 0.3126 0.3041 0.3149 0.3259 0.3712

Thomson Reuters 
Eikon 4.5285 2.2624 0.6597 0.4345 0.6885 1.4239

Source: Own calculations.
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Figure 1. Zero-coupon curves

Source: Own calculations.

Figure 2. Daily RMSE

Source: Own calculations.

Figure 3. RMSE by maturity

Source: Own calculations.

Figure 4. Beta factors
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Source: Own calculations.

Figure 5. Theoretical and actual prices for a selection of Treasury bonds
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Source: Own calculations.


